TourMiner: Effective and Efficient Clustering Big Mobile Social Data for Supporting Advanced Analytics Tools
نویسندگان
چکیده
Nowadays a great deal of attention is devoted to the issue of supporting big data analytics over big mobile social data. These data are generated by modern emerging social systems like Twitter, Facebook, Instagram, and so forth. Mining big mobile social data has been of great interest, as analyzing such data is critical for a wide spectrum of big data applications (e.g., smart cities). Among several proposals, clustering is a well-known solution for extracting interesting and actionable knowledge from massive amounts of big mobile (geo-located) social data. Inspired by this main thesis, this paper proposes an effective and efficient similarity-matrixbased algorithm for clustering big mobile social data, called TourMiner, which is specifically targeted to clustering trips extracted from tweets, in order to mine most popular tours. The main characteristic of TourMiner consists in applying clustering over a well-suited similarity matrix computed on top of trips.
منابع مشابه
Application of Big Data Analytics in Power Distribution Network
Smart grid enhances optimization in generation, distribution and consumption of the electricity by integrating information and communication technologies into the grid. Today, utilities are moving towards smart grid applications, most common one being deployment of smart meters in advanced metering infrastructure, and the first technical challenge they face is the huge volume of data generated ...
متن کامل2016 Olympic Games on Twitter: Sentiment Analysis of Sports Fans Tweets using Big Data Framework
Big data analytics is one of the most important subjects in computer science. Today, due to the increasing expansion of Web technology, a large amount of data is available to researchers. Extracting information from these data is one of the requirements for many organizations and business centers. In recent years, the massive amount of Twitter's social networking data has become a platform for ...
متن کاملA Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection
Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....
متن کاملBig Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions
The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...
متن کاملBig Data Analytics and Machine Learning in Next-Generation Wireless Networks
The next-generation wireless networks are evolving into very complex systems because of the very diversified service requirements, heterogeneity in applications, devices, and networks. The mobile network operators (MNOs) need to make the best use of the available resources, for example, power, spectrum, as well as infrastructures. Traditional networking approaches, i.e., reactive, centrally-man...
متن کامل